VLBI2010 Digital Backend
Summary

- General Functionality
- Architecture
- Specifications
- Additional Features
- Systems available/under development
General Functionality
VLBI2010 Schematic Block

Antenna
Feed
LNA

Backend

Recorder
Network
Correlator
General Functionality

Backend Schematic Block

IF Band Forming → Base Band Forming → Stream10GE VDIF
VLBI2010 Conversion Chain

- Band 1
- Band 4
- Base Band Forming
- IF Band Forming
VLBI2010 Backend

General Specifications

- Input RF band: 2 – 14 GHz, 2 polarizations
- IF band forming: 4 IFs x 2 polarizations = 8 IFs
- IF bandwidth: 1 GHz (single band or 512+512 MHz)
- Base Band forming:
 - real 32 x 32 MHz bwd x 2-bit = 4 Gbps/IF
 - complex 16 x 32 MHz bwd x (2+2)-bit = 4 Gbps/IF
- Output data rate <= 32 Gbps, scalable with factor 2
- Output over 10GE streams, 4-8 Gbps capable: 8-4 streams
- VDIF payload: multi-channel single-thread, single-channel multi-thread
VLBI2010 Backend

IF Band Forming

Functionality:
- Select 4 (8) slices x 2 pol, 1 (0.5) GHz bwd, inside 2-14 GHz

Examples:
- UDC, analog (MIT Haystack)
- ADB3, digital (INAF/MPI)
- Other developments?
Digital implementation

Functionality:

- **PFB (Polyphase Filter Bank) architecture**
 - Produce 32 (16 +16) slices x 32 MHz bwd x 2 pol, ea. 1 (0.5+0.5) GHz bwd
 - Full data rate 64MHz x 2bit x 32ch x 4 IF x 2 pol = 32 Gbps

- **DSC (Direct Sampling Conversion) architecture**
 - Produce 4 (8) slices x 1024 MHz bwd x 2 pol, for any 1 (0.5) GHz bwd
 - Full data rate 2048 MHz x 2bit x 4 IF x 2 pol = 32 Gbps
 - Full data rate 1024 MHz x 2bit x 8 IF x 2 pol = 32 Gbps
Base Band Forming Schematic Block

Nyquist Filter → Sampler → PFB/DSC

Nyquist Filter → Sampler → PFB/DSC

Nyquist Filter → Sampler → PFB/DSC

IF 1-8

Nyquist Filter → Sampler → PFB/DSC

Clock and Timing

Control Computer

10GE VDIF

10G Net

VLBI2010 IVS TecSpec Workshop - Wettzel, March 2012
Specification (proposal)

Clock and Timing Generation

- Sampling clock, 1024 or 2048 MHz, generated by a dedicated synthesizer phase locked to the H-Maser reference frequency (5 MHz, 10 MHz, 100 MHz)
- Phase noise of the synthesizer must be optimized:
 - spurious signals (no harmonic) < -90 dBc
 - harmonic suppression, 2nd < -30 dBc, 3rd < -40 dBc
 - normalized 1/f noise @10KHz offset < -90 dBc/Hz
- 1PPS for time synchronization, phase related to the reference clock
 - 1PPSHR lasting one period of sampling clock
Specification Proposal

Clock and Timing Generation

Optional but highly recommended:
Buffered output signal as monitor of:

- Sampling clock
- Output clock
- Internal running 1PPS
- 1PPSHR
Specification (proposal)

Pre-Base Band Forming

- Before sampling the band needs to be defined to avoid aliases
- Analog IF forming requires analog filters
- Band-pass width defined by the sampling clock (Sclk/2)
- In/out band discrimination > 45 dB
- Cut-off frequency defined at about -6 dB
- High number of poles (> 9) to minimize aliasing from adjacent Nyquist zones
- Ripple minimized and phase linear in band (ex. Butterworth)
- IF Total power measurement
- Automatic gain control: full range 32 dB, steps 0.5-1 dB

Note: Digital IF forming defines band-shape in the conversion process so doesn’t need analog filters
Specification (Proposal)
Base Band Samplers

- It’s the main element creating the information you have to deal with (very difficult to recover if corrupted here)
- Multi-Nyquist zones capability: ≥ 3
- Number of bits ≥ 8
- ENOB (overall accuracy) ≥ 6.6 (SNR ≥ 42dB)
- Digital differential multiplexed output code
- Serial output desirable
- Output known pattern for debug
Specification (Proposal)

Base Band Forming

Firmware capability in PFB mode:

- Generates an integer number of 32 MHz channels covering the entire IF
- Number of taps = n*256, n integer
- Maximum ripple in band ± 0.5 dB
- Total Power Measurement in each channel, hardware integration time = 1s, software integration time 1 - 60 s, even continuous
- Dynamic 2-bit representation from TP, setting time = 1s
- Fully flexible or standard defined modes output channel selection
Specification (Proposal)
Base Band Forming

Firmware capability in DSC mode:

- Generates a multiplexed version of the entire IF input band
- Maximum ripple in band is the pre-sampling filter ripple
- Total Power Measurement in each IF, hardware integration time = 1s, software integration time 1 - 60 s, usable as input of the pre-sampling agc control, even continuous
- Dynamic 2-bit representation from TP, setting time = 1s
Specification (Proposal)
Base Band Forming

Optional but highly desirable:
- Statistics of the states measurements in the output channels
- Multiple Cal Tone detection (as many as possible at the same time)
- PFB with 8MHz channels to help for RFI (difficult to be achieved at this stage)
- Analogue representation for a selected converted band
- Output ´sniffer´
- Programmable input tone generator in replacement of sampler data
- Output known pattern for debug at a further stage
Specification (Proposal)
10GE Output Stream

Output is a set of 10GE connections (optical or copper):

- VDIF - Multichannel single thread
- VDIF – Corner turned data with multiple threads carrying single band channels
- Multiple destination address for the multiple threads in the data streams
- Highly desirable 40GE adoption in the next few years
Digital Backend Systems Available

- RDBE Haystack
- China (see poster, Xiuzhong Zhang)
- DBBC2010 & DBBC3
- Japan (see poster, Yusuke Kono et al.)
- Russia (see poster Marshalov and Novov)
Chinese CDAS

Analog Part

- 1PPS
- Frequency Synthesizer
- IF1
- AGC
- IF2
- AGC
- IF3
- AGC
- IF4
- AGC

Digital Part

- DSP Unit
- A/D
- FPGA
- 4x8 To 1x32
- Output Select Matrix
- Max8ch
- reset

Interface

- VSI-H
- VSI-H
- 32bit
- 32bit
- 100M
- 1000M
- Ethernet

Main Control Computer

7th IVS General Meeting March 2012
RDBE-H Block Diagram
(common hardware for NRAO and Haystack)
RDBE Firmware

- 3 Personality types (FPGA code)
 - Polyphase filter bank (pfbg) Version 1.4 (Haystack)
 - Input is two 512MHz IFs
 - Output is sixteen of 32 possible 32-MHz channels on one CX4
 - Output is 5008-byte packets in Mark5B format
 - Quantize only (called pfba even though no pfb) (Haystack)
 - Input is four 512 MHz IFs
 - Each input is 2-bit quantized only
 - Output is on two of the four 10Gbps CX4 interfaces
 - 4Gbps / interface
 - 8224-byte packets in VDIF format.
 - Digital down converter (ddc) (NRAO)
 - Input is two 512MHz IFs
 - Output anticipated to be eight tunable channels (two working now)
 - Bandwidths ranges down in binary steps from 64 MHz to 62.5kHz
 - Output is 5008-byte packets in Mark5B format

6th IVS TOW May 2011
8 IFs @ 512 MHz
Output data rate 16 Gbps

F_n (MHz)
1-92, 92-1024, 1024-1536, 1536-2048

2 x 8 Gbps
Glass/Copper
DBBC2010 Architecture B
8 IFs @ 1024 MHz
Output data rate 32Gbps

IFn (MHz)
0~1024, 1024~2048, 2048~3072 MHz

4 x 8 Gbps Glass/Copper

H-Maser
1024/2048 MHz Synthesizer Distributor

FS PC
PCI PC
PCI Interfaces

VLBI2010 IVS TecSpec Workshop - Wettzel, March 2012
DBBC2010 Architecture C
Preliminary

IF1=14 GHz
IF2=14 GHz

ADB3

CORE3

DSC

DBBC2

PFB

FILA10G

4 x 8 Gbps
DBBC2010

- DBBC2010 architecture A and B are available today
- HAT- Lab is the contact point
- Upgrade kits are available for systems on the field